Sixth Year Clinical Teaching

Dr. Mohammed Ismael Dawood

 Assistant Professor of MedicineUniversity of Fallujah

Abnormal ECG

1. Chamber enlargement

Atrial enlargement

* P wave >> tall and peaked (>2.5 small squares) (called P pulmonal) >> right atrial enlargement
* P wave >> broad (>2.5 small squares) >> left atrial enlargement

4 P wave >> biphasic in V_{1}
\checkmark first part represent the right atrium (positive part) >> if enlarged >> right atrial enlargement
\checkmark second part represent the left atrium (negative part) >> if enlarged >> left atrial enlargement

Ventricular enlargement

Check QRS in $\mathrm{V}_{1,2,5,6}$

* Normally in $V_{1,2} \gg S$ wave bigger than r wave

4 Normally in $V_{5,6} \gg R$ wave bigger than s wave

If you find in $V_{1,2} S$ wave bigger than r wave, but the S wave is so deep (exaggeration of normal) (S wave more than 5 big squares) >> left ventricular hypertrophy

Voltage criteria of exaggeration of normal :

* S wave >5 big squares in V_{1} or V_{2}
* R wave >5 big squares in V_{5} or V_{6}
* The summation of $S+R$ waves ≥ 7 big squares

This is means left ventricular enlargement

As the cardiac muscle hypertrophied and the blood supply didn't change so, the cardiac muscle will show some changes (strain ischemia) :

- Depressed ST segment
- Inverted T wave
- Or one of them

These changes will take place in lead V_{5} and V_{6} as we are talking about left ventricle
The voltage criteria of LVH are:

- S in $\mathrm{V}_{1}+\mathrm{R}$ in $\left(\mathrm{V}_{5}\right.$ or $\left.\mathrm{V}_{6}\right) \quad>35 \mathrm{~mm}$ (Sokolow)
- R in $V_{4}-V_{6}>25 \mathrm{~mm}$; R in aVL $>11 \mathrm{~mm}$ (Framingham)
- S in $\mathrm{V}_{3}+\mathrm{R}$ in aVL $>28 \mathrm{~mm}$ in men (Cornell)

Besides voltage criteria, other features of LVH are:

- Left axis deviation of the QRS complex
- Left atrial enlargement: P mitrale
- ST segment depression and T wave inversion in leads V_{5} and V_{6} : LV strain pattern (Fig. 7.8).

How to know that the right ventricle is enlarged ?
If you found reversal of normal (R wave $>s$ wave in $V_{1,2}$) or (S wave $>r$ wave in $V_{5,6}$)

As the cardiac muscle hypertrophied and the blood supply didn't change so, the cardiac muscle will show some changes (strain ischemia) :

- Depressed ST segment
- Inverted T wave
- Or one of them

These changes will take place in lead V_{1} and V_{2} as we are talking about right ventricle
The voltage criteria of RVH are:

- R wave in $\mathrm{V}_{1} \quad$ more than 4 mm
- R / S ratio in $\mathrm{V}_{1} \quad$ more than 1
- S wave in $\mathrm{V}_{6} \quad$ more than 7 mm
- R in $V_{1}+S$ in $V_{6} \quad$ more than 10 mm .

Besides voltage criteria, other features of RVH are:

- Right axis deviation of the QRS complex
- Right atrial enlargement: P pulmonale
- S-T segment depression and T wave inversion in leads V_{1} and V_{2} : The RV strain pattern (Fig. 7.7).
rupryprymontontonsuntorv \square

reproperuprupupropupupeprprepe

If someone has biventricular hypertrophy,
The strain ischemia will appear in $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and appears also in V_{5} and V_{6}

2. Bundle Branch Block (BBB)

How to detect bundle branch block ?
Look at QRS complex, you will find the shape of M ($\left.R S R^{\prime}\right)$

* M shaped in V_{1} or $\mathrm{V}_{2} \gg$ right bundle branch block

4 M shaped in V_{5} or $\mathrm{V}_{6} \gg$ left bundle branch block

NORMAL

What are the benefits of QRS complex ?

> Shape
> Direction
$>$ Voltage

I mean, look at the QRS complex checking the shape, direction and the voltage
Shape:

- M shaped >> bundle branch block
if normal shaped, look at direction

Direction:

- Reversal of normal >> right ventricular enlargement If normal shaped and normal direction, look at the voltage

Voltage:

Exaggeration of normal >> left ventricular enlargement

Right Bundle Branch Block

"

3. Coronary Ischemia (MI \& ischemia)

In brief

- Area of necrosis >> pathological Q
- Tissue damage >> elevated ST segment
- Ischemia >> inverted T wave or peaked T

Notes ©

> Presence of pathological $Q \gg$ old myocardial infraction
$>$ Finger print of $\mathrm{Ml} \gg$ is the pathological Q
$>$ Elevated ST segment with pathological Q >> recent Myocardial infarction

The earliest ECG changes seen with an acute transmural ischemia/infarction typically occur in the ST-T complex in sequential phases:

1. The acute phase is marked by the appearance of ST segment elevations and sometimes tall positive (hyperacute) T waves in multiple (usually two or more) leads. The term "STEMI" refers to this phase.

2. The evolving phase occurs hours or days later and is characterized by deep T wave inversions in the leads that previously showed ST elevations. Transmural MIs can also be

The anatomic location of the infarct determines the leads in which the typical ECG patterns appear.

abkbablabiabikidididablikif

(iIn

Posterior MI is suggested by the following changes in V1-3:

-Horizontal ST depression
-Tall, broad R waves (>30ms)
-Upright T waves
-Dominant R wave (R / S ratio > 1) in V2
In patients presenting with ischaemic symptoms, horizontal ST depression in the anteroseptal leads (V1-3) should raise the suspicion of posterior MI.

Posterior infarction is confirmed by the presence of ST elevation and Q waves in the posterior leads (V7-9).

Posterior leads

Leads V7-9 are placed on the posterior chest wall in the following positions:
-V7 - Left posterior axillary line, in the same horizontal plane as V6. $\cdot \mathrm{V} 8$ - Tip of the left scapula, in the same horizontal plane as V6.
-V9 - Left paraspinal region, in the same horizontal plane as V6.

11
aVI
VI
Vs

11

11
avi.
V2
(8)

111
aVF
v(9)

11

In patients presenting with inferior STEMI, right ventricular infarction is suggested by the presence of:
-ST elevation in V1 - the only standard ECG lead that looks directly at the right ventricle.
-ST elevation in lead III > lead II - because lead III is more "rightward facing" than lead II and hence more sensitive to the injury current produced by the right ventricle.
Other useful tips for spotting right ventricular MI:
\cdot-ST elevation in $\mathrm{V} 1>\mathbf{V} 2$.
-ST elevation in V1 + ST depression in V2 (= highly specific for RV MI).
-Isoelectric ST segment in V1 with marked ST depression in V2.

Right ventricular infarction is confirmed by the presence of ST elevation in the right-sided leads (V3R-V6R).

$$
\square
$$

II

"uh thimwnimprill
"Hh thi"th hininh ill
"inth the the the thath the ather

$11|a+a \mathrm{VL} \quad \mathrm{V}|$

